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Abstract
In this work we review some recent research on the surface diffusion-mediated decay of
two-dimensional nanostructures. These results include both a continuous, vectorial model and a
discrete kinetic Monte Carlo approach. Predictions from the standard linear continuous theory
of surface-diffusion-driven interface decay are contrasted with simulational results both from
kinetic and morphological points of view. In particular, we focused our attention on
high-aspect-ratio nanostructures, where strong deviations from linear theory take place,
including nonexponential amplitude decay and the emergence of several interesting
nanostructures such as overhangs developing, nanoislands and nanovoids formation, loss of
convexity, nanostructures-pinch off and nanostructures-break off, etc.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The study of the dynamic and the morphological stability of
structured surfaces, and in particular nanostructures evolving
by surface diffusion currents, has attracted a great interest
during recent years, both from the theoretical and the
experimental points of view [1–16]. In fact, such a study
is closely related to topics of great relevance in emerging
nanotechnology, such as the design of new methods in
nanofabrication [17, 18] or the problem of nanostructure
stability [19]. The understanding of the processes involved has
great technological importance, because it is useful not only for
the development of nanofabrication mechanisms [20], but also

for tracking the problem of the stability of nanostructures. In
fact, current technologies allow us to achieve a high degree of
control on superficial nanostructures, e.g. modern techniques
can be used to grow specific nanostructures resolved at
the atomic scale [18]. Nevertheless, such capabilities in
nanofabrication must confront the fact that the obtained
structures are often unstable, strongly limiting the field of
possible applications. Moreover, structured surfaces play
a major role in modern technologies, thus attracting the
attention of the research community from theoretical physicists
to materials scientists. The reason for this ever-growing
interest lies on the wide range of technological applications of
structured surfaces, including solar cells, distributed feedback
lasers or microelectromechanical systems.

Surface diffusion currents can be useful to change shapes
in the nanoworld, e.g. by using a thermal treatment capable
of improving a given nanostructure [20]. That would
certainly be a ‘desirable’ consequence of surface diffusion
currents. Nevertheless, surface diffusion currents can bring
about ‘undesirable’ effects, such as, for example, if a given
built nanostructure becomes thermally unstable and decays in
macroscopically short times. Within this context, a broad
knowledge on the dynamic and morphological properties of
nanostructure evolution driven by surface diffusion currents
becomes necessary in order to develop strategies capable
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of enhancing the ‘positive aspects’ of surface diffusion, or,
in more specific words, controlling these physical processes
for a given nanotechnological application. It is expected
that the spread of experimental techniques that allow greater
control of materials at the nanoscale and the release of
more powerful computers will lead to a deeper comparison
between experiments and computer simulations in the near
future, further stimulating the interest in surface science at the
nanoscale.

Within this broad scenario, in this work we review
some recent theoretical advances on the evolution of
two-dimensional nanostructures driven by surface diffusion
currents [21–24]. Such results are mainly referred to both
the continuous and discrete modeling of the decay of high-
aspect-ratio interfaces. For such interfaces the small-slopes
approximation does not hold and, in consequence, linear theory
of surface diffusion is not a good description of interface
evolution. The rest of this review is organized as follows.
In section 2 we describe the fundamental results of the linear
theory of surface diffusion. In section 3 we review the
most important kinetic and morphological results obtained
in the continuous modeling of surface diffusion in cases far
from the small-slopes approximation. Discrete kinetic Monte
Carlo models used for the description of those phenomena
are discussed in section 4. Finally, in section 5 we present a
summary and the concluding remarks.

2. The linear theory of surface-diffusion-driven
interface decay

Continuous theory of interface evolution mediated by surface
diffusion is a well-established topic dating back to work
by Mullins [25, 26] and Herring [27, 28]. One of the
key contributions from their work is the understanding of
the relationship between surface diffusion currents and a
geometrical property of the surface: the local curvature. In fact,
within this mesoscopic approach the surface diffusion flux is
proportional to the gradient of the local curvature. Of course, in
the derivation of such dependence, there is not only an implicit
assumption of smoothness for the surface, as is required by
a proper definition of curvature, but also an underlying local
equilibrium hypothesis to have well-defined thermodynamical
coefficients such as surface tension. The underlying hypothesis
of smoothness in thermodynamical quantities such as the
surface tension leads to the broadly accepted belief that
the applicability of this approach would be restricted to
temperatures above the roughening temperature TR [29], since
it is known that the surface tension is discontinuous for
temperatures below TR.

As was pointed out by Mullins in his seminal work on
thermal grooving on boundary grains [25], normal velocity vn

for a surface element along its normal is given by

vn = − Dsγ�2ν

kBT

∂2C
∂s2

, (1)

where Ds is the surface diffusion constant, C the local
curvature, s the arc length parameter along the interface, γ the
surface free-energy per unit area (unit length in the 2D case),

� the molecular volume (‘molecular area’ in the 2D case), ν

the number of atoms per unit area (unit length in the 2D case),
kB the Boltzmann constant, and T the absolute temperature.

The surface diffusion flow defined by the equation (1) is
conservative, which means that the total surface (total volume
in the 3D case) remains constant. Moreover, under a certain
hypothesis concerning the smoothness of the initial condition,
it can be proved that this surface diffusion flow makes the total
length (total area in the 3D case) to decrease [30].

Already in the pioneering work by Mullins, most attention
has been drawn to the case of interfaces in the small-
slope approximation (this was mostly due to the resultant
simplicity of the equations rather than to physical motivations).
Subsequently, also a great deal of attention in the related
literature was focused on the following equation, directly
obtained by applying Mullins’s ideas in the small-slope
case [31–34]

∂h(x, t)

∂ t
= −K

∂4h

∂x4
, (2)

where h is a single-valued function that describes the interface
and K is given by

K = Dsγ�2ν

kBT
. (3)

By a direct substitution into the linear equation (2), we can see
that at time t , a Fourier mode of the initial interface A sin(kx)

evolves into

h(x, t) = A exp(−K k4t) sin
(
kx

)
. (4)

Equation (4) is an interesting result since it shows that every
Fourier mode performs an exponential decay whose lifetime
depends on temperature through the constant K and on the
wavelength λ. In fact, equation (4) shows that the decay
constant, in this small-slope case, is proportional to λ−4,
i.e. under the small-slopes approximation, the linear theory
predicts a fast filtering of high-frequency features of a given
interface. From the morphologic point of view, linear theory,
as established by equation (4), predicts that a sinusoidal pattern
evolves in a sinusoidal pattern with smaller amplitude. Thus
we can say that a single Fourier mode evolves in a shape-
preserving way.

3. Continuous modeling

The general case in which interfaces are not under the small-
slope approximation has been considered in some detail in a
recent paper [22], in which a vectorial, stochastic difference
equation for the evolution of two-dimensional interfaces has
been studied in a more general context. Let us consider only
the deterministic evolution of the model described in [22], in
the absence of incident flow (i.e. surface diffusion as the only
relevant process). Under this restriction, such a difference
equation is

δ�r(s, t) = −K
∂2C
∂s2

dt �n (5)

where δ�r(s, t) is the local update of the interface when time
is advanced in dt and �n is the local unitary outward normal

2
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Figure 1. (Color online) Schematic view of the evolution of the
interface following the normal vector according to equation (5),
where surface diffusion currents are proportional to the local
curvature gradient.

256 512 1024λ (nm)

0.000625

0.025

κ 
(s

–1
) slope = -4

t3

t2

t1

t0

Figure 2. (Color online) An initial interface composed by a linear
combination of Fourier modes with wavelengths λ and 2λ evolving
with equation (5). At successive steps t0 < t1 < t2 < t3 the filtering
of the highest-frequency mode (that one with wavelength λ) occurs,
in agreement with the linear theory prediction (4). Inset: log–log plot
of the decaying constant κ as a function of the wavelength λ.

vector. Evolution proceeds in a Huygens’ construction fashion,
familiar from classical optics [35], sketched in figure 1.

Equation (5) is not restricted to small slopes as its linear
counterpart given by (2) is. Moreover a numerical integration
of the equation (5) [22] shows that it recovers the linear
theory predictions when it is applied to initial interfaces that
satisfy the small-slopes approximation. In fact, we can see
in figure 2 how fast filtering of high-spatial-frequency modes
takes place when the initial interface is a linear combination
of two small-amplitude sine waves with wavelengths λ and
2λ. After a certain period of time, only the component
with larger wavelength (λ) survives. The observed amplitude
decay is exponential, in complete agreement with the linear
theory prediction (4). In particular (see the inset in figure 2),
the decaying constant κ has a power-law dependence on the
wavelength: κ ∝ λ−4.

It is worth mentioning that these characteristics facts of the
linear theory, namely exponential decay of interface features

0 1000 2000 3000
time (s)

0.1
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  (
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Figure 3. (Color online) Dependence of the aspect ratio ε − 1
against time for initial elliptical interfaces with semiaxes a and b.
The log–linear scale reveals a nearly exponential decay whose
lifetime grows with b4 (see inset).

and the power-law dependence of the characteristic timescales
against the fourth power of λ, are not restricted to the decay of
single Fourier modes. In fact, these aspects can be recovered
by considering very different situations. For instance, let us
consider the evolution of a plane ellipse with semiaxes a and
b. The conservative nature of surface diffusion implies that
asymptotically the ellipse turns out into a circle [22] (constant
curvature curve with smaller length for a given enclosed area)
with the same area than the original ellipse. If we consider the
aspect-ratio ε of the evolving curve, this reasoning leads us to
expect that ε → 1 for a long enough time. In figure 3 we
have plotted the time evolution of ε − 1 showing that, after a
short transient, an exponential decay is found. Moreover, the
lifetime (let us call τ the lifetime) dependence on λ is given
again through the relationship τ ∝ λ4, as is shown in the inset
of figure 3.

When the aspect ratio of the initial interface departs from
the small-slope approximation, strong deviations from linear
theory expectations can be observed. This can be observed
if we consider the decay of sinusoidal interfaces: while
linear theory predicts a shape-preserving decay according
to equation (4) if we consider the decay of sinusoidal
interfaces with initial aspect ratios of the order of 1,
a completely different scheme is found if the interface
evolves according to equation (5). In fact, the evolution
is no longer shape-preserving and, in particular, there
is a transient stage that exhibits a new morphological
behavior, because the initially sinusoidal interface develops
overhangs spontaneously, recovering the sinusoidal shape at
the final stage of the evolution. The different stages in the
surface diffusion-mediated decaying of high-amplitude sine-
like patterns are outlined in figure 4. Moreover, as has been
pointed out in [23], the actual evolution of an initially sine-
like pattern with initial aspect ratio in the order of 1 (i.e.,
far from the small-slope approximation) can very closely be
approximated by the following vectorial parametric equation:

�r(p, t) =
(

p − B(t) sin
(4πp

λ

)
, A(t) sin

(2πp

λ

)
)

, (6)
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(a)

(b)

(c)

Figure 4. Schematic view of the decay of sine waves driven by
(curvature-dependent) surface diffusion currents in dimension 1+1.
In (a) the initial profile, a sine wave far from the small-slope
approximation, is shown. (b) represents the transient regime in which
the interface develops spontaneously overhangs (as is stressed in the
dashed box) and departs from the sine-like shape. Finally, in the late
evolution stage, the interface recovers the sine-like shape with a
smaller amplitude, as is shown in (c).

where �r is a vectorial function whose value, at a fixed time
t , depends only on the parameter p, while A(t) and B(t) are
coefficients to be fitted from the numerical data.

Differences between the linear theory of surface diffusion
and that predicted by the general equation (5) are not restricted
to morphological aspects. In fact, according to equation (4) the
linear theory predicts an exponential decay of the global width
Wg (defined as the difference between the interface global
maximum and minimum) as a function of time. The time
evolution of Wg according to equation (5) is shown in figure 5,
where we can see a different relaxation behavior for the decay
of initially sinusoidal interfaces of the same wavelength (λ =
1000 nm): while by starting from small amplitudes, the global
width Wg decays exponentially with time, a nonexponential
transient takes place when the initial interface is far from
the small-slope approximation. As was discussed in [22],
this nonexponential decay occurs simultaneously with the
spontaneous formation of overhangs.

4. Kinetic Monte Carlo modeling

Let us consider a two-dimensional triangular lattice of sides
Lx × L y on which particles (atoms or molecules) can diffuse.
Each site of the lattice can be in one of two possible states:
occupied (by a particle) or empty. We shall introduce the
occupation number ni j that takes the value 1 if the site (i, j) is
occupied and 0 if the site (i, j) is empty. A periodic boundary
condition is imposed on the lattice along the x direction, while
a free boundary condition is imposed along the y direction
by introducing two extra rows in the lattice, corresponding to
j = 0 and L y + 1, which we shall call the bottom and the

0 2000 4000 6000 8000 10000
time (s)
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(n
m

) A
0
=1000

A
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=800

A
0
=400

A
0
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Figure 5. (Color online) Log–linear plots of the global width,
defined as the difference between the interface global maximum and
minimum, as a function of time. Results obtained by a numerical
integration of equation (5) with an initially sinusoidal interface (with
λ = 1000 nm and K = 1.86106 nm4s−1) for several initial
amplitudes (as listed in the figure in units of nm). The departure from
the pure exponential decay mode becomes evident, within the
short-time regime, when initial amplitudes are increased, and the
initial conditions of the interface lie far from the small-slope case.

top of the system, respectively. Such extra rows cannot be
occupied by particles, and sites on these rows will be called
‘forbidden sites’. We shall assume that every particle on
the lattice interacts with its neighbors through the following
Hamiltonian:

H = Eb

∑

〈i, j,l,m〉
ni j nlm + 2Eb

Lx∑

i=1

ni1, (7)

where 〈 〉 denotes a nearest-neighbor restricted summation
and Eb is the bond energy between two nearest-neighbor
particles. In this way, the first summation corresponds to bulk
interactions among particles, while the second one accounts for
the interaction between particles and the bottom wall.

In a single diffusion event a particle in the (i, j) position
(1 � i � Lx , 1 � j � L y) of such a lattice can jump into one
of its six neighboring sites, provided that such a site is empty,
and, since surface diffusion is the only process considered by
the model, the dynamics of the system is conservative and
the total number of particles NT is constant during the whole
evolution.

Diffusion processes have been implemented under the
KMC approach, with transition rates evaluated according to
the harmonic transition state theory, i.e. the transition rate for
a transition from configuration cini to configuration cfin is given
by

W (cini → cfin) = ν0 exp
[ − Eact(cini, cfin)/kBT

]
, (8)

where ν0 is the effective vibration frequency, Eact(cini, cfin)

is the activation energy for a transition between cini and
cfin. Throughout this work, we have take ν0 = 5 ×
1012 Hz. As was pointed by Weinberg and co-workers [36–38],
the kind of dynamics that induces the transition rate given
by equation (8) satisfies the detailed balance condition for
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a Boltzmannian equilibrium state as the standard dynamic
rules, such as Kawasaki, Glauber or Metropolis dynamics
do [39–42]. Also, W (cini → cfin) represents a physical
quantity since it is proportional to the probability of success
for thermally activated barrier crossing.

A single main loop in the kinetic Monte Carlo model can
be summarized as follows.

• All possible transitions in the system, involving diffusion
events from an occupied site into any unoccupied next-
neighbor site, are identified and their corresponding
transition rates are computed.

• A diffusion event is determined by randomly choosing
from all the possible jumps weighted by their relative rate
of occurrence given by equation (8).

• The transition is performed and the system is updated.

The Monte Carlo steps (MCS) time unit is defined such
that NT iterations of the preceding loop correspond to one
MCS. In the kinetic Monte Carlo approach the connection
between ‘real time’ and MCS time is established in the
following way: let μ be a label for all possible transition
events in the system. The transition rate Pμ = ν0 exp (− Eμ

kb T )

has the dimension of a frequency, and its reciprocal can be
considered as the residence time for the particle involved
in the transition. As transition probabilities for all possible
events are independent, the overall probability per unit time
for the system to perform a transition is obtained by adding all
possible transition rates, namely P = ∑

μ Pμ. Therefore, 1
P is

the mean residence time for the system in a specific state and,
consequently, it represents the mean time associated with one
iteration.

In this work we considered five different models for
activation energies. The common feature in all this models
is that the activation energy for a transition from the state cini

to the state cfin only depends on the energies of those states.
We label these different activation energy models with the
acronyms MARM, EINI, EINI-C, EAM-Ni and EAM-Cu, and
these models are described as follows.

• MARM: In this model, a harmonic dependence of the
energy as a function of the reaction degree is assumed.
This model has been considered previously in KMC
studies applied to surface diffusion of clusters [36, 37],
and also in the same context as in the present paper [23].
The activation barriers are obtained simply by considering
the crossing of two such harmonic potentials displaced a
lattice-constant unit. A more detailed description of this
harmonic model can be found in [23, 36, 37]. Here we
shall restrict ourselves to give the final expression for the
activation energy, namely

Eact
ini→fin = ε

2

(
Efin − Eini

ε
+ 1

2

)2

, (9)

where Eini and Efin are the energies of the initial and final
states, respectively. Also we called ε = ka2, where k
is the force constant of the harmonic wells and a is the
lattice constant. Throughout this work, we have taken
a = 0.3 nm and ε = 1 eV. By performing a simple

replacement in the Hamiltonian (7), the energy difference
Efin − Eini can be expressed in terms of the variation of the
number of occupied neighbors (�n) caused by a diffusing
particle, i.e. Efin − Eini = Eb�n.

• EINI: Here activation energies only depend on the energy
of the initial state Eact = −Eini, irrespective of the final
state. In spite of its simplicity, this model has frequently
been considered in the literature, in contexts similar to that
of the present paper [43–45].

• EINI-C: This model is a slight variation of the EINI
model, since it has only an additional constraint. In fact,
activation energies in the EINI-C model are obtained in
the same way as in the EINI model, except for the case
in which the particle trying to perform the movement
attempts to make a transition from a state with a nonzero
coordination number (z �= 0) to a state with z = 0.
Here, these kinds of transitions are forbidden. Thus, while
particles can eventually detach from a given cluster in
a single diffusion event in the EINI model, this can no
longer occur in the EINI-C model. Nevertheless, it is
important to notice that, even in the EINI-C model, a given
particle with coordination number z = 1 can become
uncoordinated (z = 0) if its unique nearest neighbor
moves away from it, in a licit diffusion event.

• EAM-Ni and EAM-Cu: With these acronyms we refer to
models in which the activation energies for all possible
transitions (to first-neighbor paths) in two-dimensional
triangular lattices are obtained by means of the embedded
atom model (EAM) [46–49]. Activation energies for
nickel (EAM-Ni) and copper (EAM-Cu) employed in this
paper correspond to results that have previously been
reported in the literature [50].

It is worth mentioning that, even by starting from a single-
cluster configuration, one has a rich scenario of possible kinetic
evolution. In fact, particles can evaporate from the cluster,
voids can appear, new clusters, unconnected to the original one,
can also grow during the dynamic evolution process, etc. In
this way, a certain programing effort is necessary in order to
distinguish between the main cluster (connected to the bottom
of the system by a path of nearest neighbors) and other clusters
in the system. Let hi be the position of the highest occupied
site at the i th column on the main cluster. We characterize the
fluctuations of the interface by means of a standard estimator,
such as the interface roughness, (W (Lx , t)), given by

W (Lx , t) =
√√√
√ 1

Lx

Lx∑

i=1

(hi(t) − h(t))2, (10)

where h(t) = 1/Lx
∑Lx

i=1 hi(t). It is worth noticing that
some results are presented by using nanometers (nm) as the
length unit, while in other cases the use of lattice units is
more convenient. In any case, it is a trivial task to switch
between units: for lengths along the x axis one has to multiply
the length in lattice units times the distance among closest
neighbors in the triangular lattice a, which was taken as a =
0.3 nm for models MARM, ENI and EINI-C, while the value
of a for models EAM-Ni and EAM-Cu was obtained from
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Figure 6. (Color online) Data collapse found for results
corresponding to the model EINI when the squared roughness and
the time axis are rescaled as is indicated in equation (13). Different λ
values are indicated in lattice units and the simulation temperature
was 300 K.

the lattice units of their corresponding FCC structures. For
distances along the y axis an additional factor

√
3

2 appears due
to the geometry of the triangular lattice. While according to
equation (4) the linear continuous theory of surface diffusion
predicts a vanishing asymptotic interface roughness, discrete
models such as the KMC models studied in this paper often
have a nonvanishing asymptotic interface roughness W∞ at
nonzero temperatures, as a consequence of the internal noise
that is always present in discrete systems [51]. Thus, we
propose a direct generalization of the linear continuous theory
result, in order to take into account the discrete nature of
matter, regarding the prediction for the interface roughness
evolution of a small-amplitude Fourier mode A sin(kx), given
by

W 2(λ, t) = A2

2
exp (−2K k4t) + W 2

∞(1 − exp (−2K k4t)).

(11)

Nevertheless, it has been found [24] that, although the
MARM and ENII models both exhibit an exponential decay
of W , while the MARM model has a power-law dependence
of the decay constant κ ∼ λ−4, in complete agreement with
equation (11), the corresponding exponent becomes 3 in the
case of the EINI model. It is possible to perform a rescaling
of the axes if we plot W against time in order to obtain data
collapse of the curves corresponding to different values of
λ. Nevertheless, due to the different exponents governing the
power-law decay of κ with λ, by rescaling a single axis one
cannot achieve data collapse for both MARM and EINI models
simultaneously. So, that rescaling must be done independently.
However, by rewriting equation (11) as

W 2(λ, t) = W 2(0) exp (−2K knt) + W 2
∞(1 − exp (−2K knt)),

(12)
for an arbitrary exponent n, it becomes evident that we will
be able to get data collapse after rearranging equation (12) as

0 0.05 0.1

0

0.5

1

1.5

2

2.5

3

EINI-C λ=90
linear fit
exponential dependence

crossover region

Figure 7. (Color online) Typical behavior found for the decay of W 2

as a function of time, in the case of the EINI-C model (actually, the
same kind of behavior is also found for models EAM-Cu and
EAM-Ni). A transition from a linear dependence to an exponential
decay is clearly observed, and the transition takes place at a narrow
crossover region. The parameters corresponding to this simulation
are: λ = 50 (in lattice units), T = 300 K and simulation data are
averaged over 50 independent runs.

follows:
W 2(λ, t) − W 2∞
W 2(0) − W 2∞

= exp (−2K knt). (13)

By applying this procedure we obtained a quite good data
collapse for the EINI model at 300 K, as shown in figure 6.

Although the generalization of the linear theory of surface
diffusion provided by equation (11) shows a good agreement
with KMC data for both the MARM and EINI models, this is
not the case for the models EINI-C, EAM-Ni and EAM-Cu.
For these models, a qualitatively different temporal evolution
of the roughness was found: an initial linear decay of W 2 is
followed, after a narrow crossover region, by an exponential
decay. A typical curve for this kind of ‘anomalous’ roughness
evolution is shown in figure 7. The plotted data correspond
to a KMC simulation for the EAM-C model, and the best-fit
curves for the initial (linear) and final (exponential) stages are
also plotted. It is clear from figure 7 that this transition from a
linear to an exponential decaying regime takes place in a very
narrow crossover region, where both curves and numerical data
merge smoothly together (see the double arrow in figure 7).

For initial sinusoidal profiles far from the small-slope
approximation, we obtain a spontaneous overhang formation
in the intermediate state, before the decay of the interface into
the equilibrium nearly-flat shape. This can be observed in
the typical snapshots (taken at T = 300 K for the MARM
model) shown in figure 8, which correspond to the decay of a
sinusoidal interface with A = 20 and λ = 20 (in lattice units)
so that A

λ
∼ 1. The shape of the interface at different stages is

very similar to that found in the continuous model for the decay
of sinusoidal profiles with initial aspect ratios near to 1, such
as those sketched in figure 4(b) and described by the ansatz in
equation (6). Of course, some differences also become evident
due to the stochastic nature of the Monte Carlo model and
some faceting that can be observed in the snapshots of figure 8.
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Figure 8. (Color online) (a) Initial condition, (b) 150 MCS, (c) 400 MCS, (d) 500 MCS. Snapshots of the interface at successive times
(indicated in MCS) showing the decay of a initially sinusoidal profile far from the small-slope approximation. Simulated temperature is
T = 300 K and geometrical parameters in the initial wave are (in lattice units) A = 20 and λ = 20. The activation energy model used in the
simulation is the MARM.

Varying the temperature in a rather large range does not change
this behavior. Moreover, it is important to notice that this
result, from a qualitative point of view, does not change when
we change the activation energy model considered, since the
same morphologic behavior shown for the MARM model in
figure 8 has been obtained for models EINI, EINI-C, EAM-Ni
and EAM-Cu [24].

Let us present some typical results on the time evolution
of initially rectangular patterns. Let Bs and Bi be the upper and
lower basis of the pattern and H the height of the rectangles.
The spatial period of the pattern then is Bs + Bi. More
specifically, we are interested in the relaxation behavior of
patterns in the large-slope case (i.e. for H � Bs, Bi) and
varying the ratio between the bases Bs and Bi.

In the case in which Bs � Bi, the rectangular features
are unstable and after a short transient every rectangle in
the pattern breaks off into several islands, the number of
such islands being a stochastic quantity, with an average
proportional to the height of the rectangles H . The average size
of the islands is also proportional to the width of the rectangles
Bs. In this way, the transient state is conformed by a number
of small clusters arranged in a matrix-like structure, as can

be seen in figure 9. This breaking off of nanostructures may
be relevant if we consider the following situation: a metallic
contact supported on an insulator substrate. Depending on
the surface mobility and on geometrical parameters of the
nanocontact, this may break off by surface diffusion and the
system turns out into an insulator. This effect can be seen in
figure 10, where an initial bridge-like structure (figure 10(a))
turns out unconnected due to surface diffusion.

If we consider an initial rectangular pattern in which
Bi � Bs, fluctuations on the sides of adjacent rectangles
cause them to merge, forming voids. The situation is closely
related to the case of the emergence of nanoislands, and it can
be thought as some kind of island–void symmetry, since both
are complementary to a certain degree: the average size of the
nanovoids is proportional to Bi, while the average number of
voids formed between two rectangles is proportional to H . The
whole picture is that of a matrix-like arrangement of nanovoids
appearing after a short transient, as is shown in figure 11.

It is important to stress that the exposed morphological
results in figures 8–11, are not dependent on the particular
activation energy model choose. Thus, the reported
morphological stages have a much more universal character
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(a) (b)

(c) (d)

Figure 9. (Color online) (a) Initial condition, (b) 50 MCS, (c) 150 MCS, (d) 500 MCS. Snapshots at successive times (indicated in MCS)
showing the decay of a rectangular pattern in the case Bs � Bi for the model MARM. A transient state consisting of a matrix-like array of
nanoislands is clearly observed. Temperature in the simulation is 300 K, and geometrical parameters of the initial pattern are (in lattice units)
H = 70, Bs = 4 and Bi = 16.

than kinetic properties, that, as we discuss above, are model-
dependent. For instance, in figure 12 we compare snapshots
of the five activation energy models considered in this work,
starting from a same initial rectangular profile with Bi =
Bs. It is evident that the morphological structures formed
are very similar, independently of the activation energy model
considered. Furthermore, as is shown in figure 12, for all
the models we also found that an initially rectangular profile
develops patterns that are very similar to those shown in
figure 8(b). This finding means that in all cases a fast filtering
of high-frequency modes operates, so that ‘memory’ effects on
the initial rectangular profile are lost and the systems evolve in
the same way as if they were started from a sinusoidal (lowest-
frequency Fourier mode) profile. As was pointed out in [23], it
is interesting to notice that such high-frequency filtering takes
place under a clearly nonlinear regime, in which superposition-
principle ideas are a priori no longer applicable. Of course,
the snapshots of figure 12 were taken at different MCS, which
is understable since, as we have pointed out above, kinetic
properties strongly depend not only on temperature but also
on the model considered for activation energies.

5. Summary and concluding remarks

We have reviewed recent results concerning the decay of
two-dimensional nanostructures driven by surface diffusion
currents. Both continuous and discrete modeling of the
same phenomenon were discussed and compared. From the
point of view of continuous modeling, a vectorial scheme to
integrate numerically a flow in which the normal velocity is
proportional to the intrinsic Laplacian of the local curvature
was followed. In addition, kinetic Monte Carlo simulations
of two-dimensional models for the study of nanostructure
decay were reviewed. Different alternatives for the activation
energies associated with diffusion paths, including a harmonic
model (MARM), models only sensitive to the energy of
the initial state of the diffusing particle (EINI and EINI-C),
and also models where activation energies were obtained by
means of the embedded atom model (EAM-Ni and EAM-Cu)
have been considered. The study of both kinetic properties
of the decay of sinusoidal profiles within the small-slope
approximation, and morphological properties related to the
decay of high-aspect-ratio structures was considered. The
results were compared not only among the different activation
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(a)

(c)

(b) 

(d)

Figure 10. (Color online) (a) Initial condition, (b) 7000 MCS, (c) 8000 MCS, (d) 10 000 MCS. An initial bridge-like structure breaks off,
turning out unconnected due to surface diffusion currents. Simulated temperature is 300 K and the activation energy model used is the
MARM.

energy models used, but also with the predictions from the
continuous modeling.

Results from the continuous modeling show that
predictions from the linear theory of surface diffusion were
recovered in the case of interfaces under the small-slopes
approximation. Moreover, in the general case, simulations
show nonexponential decaying modes and spontaneous
overhang generation.

Concerning kinetic properties of the discrete modeling, we
found that, for the decay of small-amplitude sine-like profiles,
in the case of the MARM and EINI models, the interface
roughness follows a displaced-exponential dependence, which
can be considered as a natural generalization of the continuous
theory. Nevertheless, we also found that for the remaining
models considered (i.e. EINI-C, EAM-Ni and EAM-Cu) the
interface roughness follows a qualitatively different time decay
evolution, since it is linear during an initial stage and, after a

short crossover region, it becomes exponential. Although the
decay–lifetime dependence on the profile wavelength follows
power laws in all cases, the associated exponent is model-
dependent.

Concerning the morphological properties of high-aspect-
ratio pattern decay, we found that shape evolution is
qualitatively similar irrespective of the particular activation
energy model used and, even more remarkably, this evolution
is quite similar to that predicted by the continuous theory
of surface diffusion. In particular, sinusoidal profiles of
initial aspect ratios of the order of 1 (i.e. far from the small-
slopes approximation) show the spontaneous development of
overhangs during a transient stage, and the interface shape
can approximately be described by the ansatz given by
equation (6). In the case of very narrow rectangular slabs
(Bs � Bi � H ), rectangles break down into several
nanoislands during a transient regime. Although the number
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(a) (b)

(c) (d)

Figure 11. (Color online) (a) Initial condition, (b) 50 MCS, (c) 100 MCS, (d) 500 MCS. Snapshots at successive times (indicated in MCS)
showing the decay of a rectangular pattern in the case Bi � Bs for the model MARM. The formation of a transient state consisting of a
matrix-like array of nanovoids is evident. Temperature in the simulation is 300 K, and geometrical parameters of the initial pattern are (in
lattice units) H = 70, Bs = 16 and Bi = 4.

and size of such nanoislands depend on kinetic aspects, such as
the particular activation energy model, from a morphological
point of view, we found that this transient regime is observed
in all cases and it looks qualitatively similar, irrespective of the
activation energy model considered. Similarly, a rectangular
array of voids, in the transient stage, was found in the case
Bs � Bi � H .

Kinetic properties of nanopattern decay strongly depend
on the activation energy model considered. In this sense,
kinetic predictions from the continuous theory of surface
diffusion are expected to be in agreement with the observation
of the actual evolution of a discrete system, only in some
particular cases. In contrast, continuous theory predictions
concerning morphological aspects show a wider applicability.
In fact, that theory describes, in a qualitatively correct way,
the observed morphologies in a wide range of situations and
irrespective of the activation energy model considered. In
this way, we expect that this work will contribute to stimulate
experimental research in this field aimed to test, in real
nanotechnological systems, the predictions of the continuous
surface diffusion theory concerning morphological aspects.

These results have shown that, for both the discrete ki-
netic Monte Carlo approach and the continuum description,

overhang formation during the intermediate stages of the equi-
libration process is quite frequent, becoming the rule rather
than the exception. In this sense, we stress the importance
of modeling this kind of system in a way that accounts for
the possible formation of overhangs during the dynamic evo-
lution. In contrast, highly restrictive models like standard
solid-on-solid models [34], which by definition do not al-
low for overhangs, cannot describe either multi-valued inter-
faces and void formation or other interesting physical situa-
tions. Thus, the discussed results should be taken into account
in future work, in order to develop models relevant to nan-
otechnological systems having enough flexibility to describe
those situations.

In this work we have reviewed recent results in which
theoretical results, continuous modeling and discrete kinetic
Monte Carlo simulations were extensively compared and
complemented. This complementarity among very different
modeling strategies has its own theoretical relevance because
the relationship between continuous descriptions and discrete
models is still under debate in several physical situations, such
as the theory of evolving interfaces in growing models [34].
It is worth mentioning that, by identifying the correct
model capable of describing an actual physical system,
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(a) (b)

(c) (d)

(e) (f)

Figure 12. (Color online) System evolution for each model considered starting from the same initial rectangular profile shown in (a), after the
number of MCS indicated in each snapshot. (b) Model MARM at 100 MCS and at T = 300 K. (c) Model EINI-C at 1000 MCS and at
T = 300 K. (d) Model EINI at 400 MCS and at T = 300 K. (e) Model EAM-Cu at 4000 MCS and at T = 800 K. (f) Model EAM-Ni at
100 MCS and at T = 800 K. The geometrical parameters of the initial rectangular pattern are Bi = 15, Bs = 15 and H = 30, all of them
measured in lattice units.

computer simulations can become a powerful tool aiding the
nonexpensive design of nanodevices and nanopatterns.
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